
 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

 

Software Framework for Augmented-Reality 
Multiplayer Quadcopter Gaming 

 

Gabriel Simmons  
Naveen Gowrishankar, M.S.  

Nelson Max, Ph.D., UC Davis Dept. of Computer Science  
Zhaodan Kong, Ph.D. UC Davis Dept. of Mechanical Engineering 

 
 

Abstract— Augmented reality, Unmanned Aerial Vehi-cles 
and gaming are rapidly developing technologies in today’s 
market. To date, few systems have been proposed to combine 
these technologies into an integrated gaming experience. We 
propose a multi-player augmented reality quadcopter-based 
video game, in which the players pilot real drones from a first-
person perspective while wearing a VR headset. The user sees 
the real environment overlaid with AR game elements through 
the window of a virtual cockpit, as if they are piloting the 
quadcopter from inside. This game system can be utilized as a 
platform to implement a variety of game types. 
 

I     Introduction  
A. Motivation  

Augmented Reality (AR) is a budding technol-ogy 
that is seeing increasing use and popularity in our day-
to-day lives with the advent of mo-bile applications 
and games like Snapchat[1] and Pokemon Go [2]. 
Virtual reality (VR) has also come a long way, with 
many high-tech devices like the Oculus Rift[3], HTC 
Vive [4], PS-VR  
[5] etc., that have moved past the novelty stage 
and are now available in the market at competi-
tive prices, allowing consumers to enjoy engaging 
virtual experiences and developers and artists to 
create software and entertainment experiences for 
these devices.  

Mixed reality (MR) is an advanced form of AR 
where there is not only an overlay of information, but 
also direct or indirect user interaction with the virtual 
overlay. The Microsoft HoloLens [6], the most popular 
mixed reality focused device, is currently relatively 
expensive, but it has opened up the market and now 
many companies have started to make their own AR 
and MR devices 

 
 
 
for specific applications. AR and MR, unlike VR, 
allow the users perspective to be firmly anchored in a 
real world coordinate frame while being able to access 
or control visual information from a overlaid virtual 
frame that can appear in fixed registration with the real 
world frame as the user moves or turns his/her head. 
AR requires the use of sensors and software working 
together to create this immersive effect. AR can also be 
combined with many other existing fields and 
technologies where a mixed perspective reality is 
useful, or can provide an engaging experience for the 
user such as in the medical industry where AR and MR 
tools are being developed [7] for use in surgery, patient 
information services and medical education. Other 
applications include, but are not limited to, travel and 
sightseeing, advertisements and promotions, military 
vehicles and operations, maintenance and repair etc..  

Consumer quadcopters have seen significant ad-
vances in the past decade, both in popularity and 
functionality. Today’s smart quadcopters provide a 
number of advanced features. These include mul-tiple 
varieties of autopilot capability, in which the 
quadcopter performs actions such as hovering in the 
same location, or navigating to user-specified 
waypoints automatically. Today’s consumer quad-
copters also provide integrated camera support, 
including object following and other flight modes to 
facilitate cinematography.  

AR can offer an exciting new experience to people 
who enjoy gaming and Unmanned Aerial Vehicles 
(UAVs). There are precious few upcom-ing products 
that offer this mixture of technologies packaged into an 
indoor gaming product. This 



 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

Hardware Item Quantity 
 

    

3DR Solo quadcopter 1 per player 
 

GoPro HERO4 camera 1 per player 
 

Oculus Rift VR headset and touch controllers 1 per player 
 

HDMI capture card 2 per player 
 

HDMI splitter 1 per player 
 

VR-ready Windows 10 workstation 1 per player  

(required to run Unity and generate stereo video for the Oculus headset)  

  
 

VR-ready Linux workstation running Ubuntu 16.04LTS 1   

(required for ROS)  
 

  
 

Local wired or wireless network 1  
 

    

 
TABLE I  

SYSTEM HARDWARE REQUIREMENTS 
 
 
 
 
paper proposes a multi-player game system that makes 
use of both of these technologies. The system will 
allow the user to pilot the drone as if they were flying 
the quadcopter from the inside, viewing the real 
environment overlaid with AR game elements through 
the cockpit window.  

This paper first explains the various hardware and 
software components of the system, and how they 
interact to produce the complete game plat-form, in 
the section entitled System Summary. We then 
discuss the contributions of this work in the area of 
Quadcopter Control. Finally, we include some 
preliminary results obtained with this software 
framework, as well as a discussion of these results 
and their potential applications and future 
improvements. 
 

II System Summary  
A. Gameplay Environment 
 

This system is designed for use in an open in-door 
environment, with dimensions approximately 30 feet 
long by 20 feet wide by 15 feet high. 
 
B. Hardware Elements 
 

The hardware elements used in this project are 
listed in Table II-B. 

The 3DR Solo is a well built, durable quadcopter 
capable of withstanding hard landings, which is perfect 
for this use case as a gaming device for novice pilots. The 
quadcopter weighs about 1.7 kg with an attached GoPro 
HERO4 camera on a fixed gimbal. A fixed gimbal was 
deemed to be necessary to provide a true mixed reality 
ex-perience with the user having visual feedback of the 
drone’s movements when the drone pitches or 

 
rolls to perform its maneuvers. The 3DR Solo was 
designed to support the GoPro Hero 4 camera.  

The Oculus VR headset, although primarily used for 
virtual reality applications, was the best candidate for a 
headset capable of rendering both the video from the 
drone and layering the virtual frame of reference 
containing the game objects onto the real world video 
view via the Unity graphics engine. The Oculus VR 
system has an extensive software framework for 
application de-velopers to take advantage of this 
engine. The Oculus headset also comes with a pair of 
touch controllers (joysticks) that are used by the player 
to navigate the mixed reality landscape by controlling 
the movement of the Solo. The Oculus SDK is limited 
to supporting one headset per workstation. As a result 
one Windows workstation is required per player.  

1) Hardware Connections  
Necessary hardware connections for a two-player 

instance of the game system are depicted in Figure 1. 
One Linux workstation is required. Video is captured 
from the GoPro camera on-board each Solo, and 
streamed wirelessly from the Solo quadcopter to the 
corresponding Solo controller using the Solo’s built-in 
transmission system. The Linux workstation receives 
these videos from each quadcopter via an external 
HDMI capture card between the Solo Controller 
HDMI-out and a USB port on the workstation.  

One Windows 10 workstation is required for each 
player. The Oculus hardware for the player is 
connected to this workstation via HDMI (headset) and 
USB (headset and controllers). The Windows 
workstations also receive the video from their 
corresponding quadcopters, via an HDMI splitter and 
an added internal video capture card.  

All workstations must be connected to the same 
local area network, by Ethernet or WiFi. All com-
munication between the Linux workstation and the 
Windows workstations is mediated by rosbridge 
(described in Software Elements). Communication 
between Windows workstations is mediated by Unity’s 
Network Manager utility. 
 
C. Software Elements 
 

The key software elements of this project in-
clude 



 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

• Robot Operating System (ROS) 
 

– rosbridge 
– MAVROS  

• Unity game engine (one instance per 
player running on a VR-ready Windows 10 
worksta-tion)  

• ORB-SLAM2 localization algorithm (one 
in-stance per quadcopter running on the 
Linux workstation)  

The quadcopter control system relies heavily on the 
Robot Operating System (ROS). ROS is a software 
framework for Linux that allows for the modular 
development of robotics appli-cations. Two ROS libraries 
of particular impor-tance are MAVROS and rosbridge. 
MAVROS is a ROS package that provides a ROS 
interface to the MAVLink serial communication protocol. 
MAVLink is a standard protocol used for com-
munication with quadcopters and other small un-manned 
vehicles. This communication protocol is supported by 
the ArduCopter firmware running on the Solo. Rosbridge 
is a software tool that provides a JSON interface to ROS. 
This software facilitates communication between ROS 
and Unity, necessary since ROS is available only on 
Linux, and Unity and the Oculus are not yet officially 
supported on Linux. Rosbridge supports a variety of 
transport layers, including WebSockets and TCP.  

The gaming elements of the system are handled by the 
Unity game engine. Unity is responsible for game physics 
(simulating interactions among  

 
players and in-game objects) and rendering the 
view of the game for each user. The Unity game 
engine is one of the most popular platforms for 
game development. 

The localization of the quadcopters is achieved by 
the ORB-SLAM2 algorithm, a state of the art 
algorithm for vehicular localization. One instance of 
ORB-SLAM2 is required for each quadcopter. 
 
D. Roles and interactions of system components 
 

Conceptual components of the system and 
infor-mation flow between these components is 
shown in Figure 2. 
 

1) User Input  
In any game, the user will typically be required to 

move their quadcopter within the game space to achieve 
some objective (i.e. maneuvering around obstacles, 
following another quadcopter, reaching a goal or target). 
Additionally, users may be required to perform other in-
game actions such as firing at a virtual target, activating a 
power-up, etc. To perform an in-game action or 
manipulate the quadcopter, the user indicates their desired 
action by manipulating the Oculus touch controllers ac-
cording to a specified control scheme as shown in Figure 
3. For instance, the user may desire to move their 
quadcopter to the right, so they would move the joystick 
of the left hand touch controller to the right, since this 
joystick corresponds to lateral motion. This information is 
collected from the player’s Windows workstation and 
forwarded to the Linux workstation for the corresponding 
player via rosbridge.  

2) Waypoint Mapping  
The controller information is used as input to the 

waypoint mapping system block. This con-ceptual 
element of the game system is currently  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Hardware and connections Fig. 2. Conceptual system block diagram 



 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Oculus touch controller button layout. Buttons not labeled 
with specific actions are used for in-game actions that vary between 
games. 
 
 
implemented in ROS. (However, the logic for this 
system block will likely be migrated to Unity with 
the addition of collision avoidance and virtual object 
interaction described below.) The waypoint mapping 
module takes in the raw joystick data and translates 
the data to a waypoint relative to the quadcopter. See 
section III-B.2 for details on this translation. This 
local frame waypoint is then handled by the 
waypoint modification system block.  

3) Waypoint Modification  
We use this method of waypoint mapping rather 

than direct velocity commands because it facili-tates 
obstacle avoidance and the simulation of in-game 
physics on the real drone. These features are not yet 
implemented, but we propose their im-plementation in 
the waypoint modification system block. The logic for 
this system block would reside within the Unity game.  

Each waypoint can be compared ahead of time with 
the known locations of physical obstacles such as the 
enclosure wall. The collision avoid-ance and virtual 
object interaction module modifies the waypoint 
generated by the waypoint mapping module to prevent 
collisions or to simulate the effects of in-game events. 
Our proposed imple-mentation for collision avoidance 
and virtual ob-ject interaction is discussed further in 
Quadcopter Control.  

4) Quadcopter and ORB-SLAM2  
ORB-SLAM2 is a simultaneous localization and  

mapping algorithm for vehicles that takes in mono or 
stereo video frames and produces an estimate of 

 
the pose (location and orientation) of the vehicle, as 
well as continuously building a map of the vehicle 
surroundings. The Solo sends its video stream to the 
corresponding instance of ORB-SLAM2 running on 
the Linux workstation. The localization algorithm 
returns the pose estimate of the quadcopter. The 
quadcopter fuses this infor-mation with other sensor 
data using an Extended Kalman Filter running on its 
internal hardware to generate an overall estimate of its 
position. Equipped with an estimate of its current 
position, the Solo can navigate to waypoints 
automatically using its internal autopilot firmware 
(ArduCopter).  

5) Unity  
Unity also receives the video stream from each 

quadcopter. After receiving the video, Unity cor-rects 
the stream for barrel distortion, overlays virtual 
elements, and displays the view of the game 
environment to the user on the Oculus headset. Unity 
could potentially also be used for collision avoidance. 
Each instance of ORB-SLAM2 sends its position 
estimate to Unity, which updates the location of the 
corresponding virtual quadcopter. In-game events 
based on proximity to virtual ob-jects are detected in 
Unity.  

6) User Display  
The user view of the game environment is gen-

erated by Unity, and consists of AR game 
elements overlaid on the video feed from the 
player’s Solo quadcopter. See Figure 8 for an 
example of user view during a game. 
 

III Quadcopter Control  
A. Motivation  

Controlling the Solo in an indoor environment presents 
several challenges. Manual flight using the stock Solo 
controller takes several hours of practice to master and is 
not intuitive for the first-time flyer. In manual flight, the 
user exerts low-level control over the quadcopter: to 
maintain a constant position (hover), the user must 
constantly be correcting for drift and disturbances. The 
Solo offers multiple other flight modes that make use of 
the internal proportional-integral-derivative (PID) 
controller. However, these flight modes are not directly 
utilizable using a video game controller instead of the 
stock Solo controller. Additionally, indoor flight using the 
stock controller is unsafe, as 



 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

the Solo does not provide any safeguards against 
collision. We desired a control system for the Solo that 
would satisfy the following three qualities:  

• Safety Since most large consumer drones like 
the Solo are intended for outdoor flight, these 
platforms do not provide any safeguards 
against collisions. Since our game is intended 
for indoor use by multiple players, we desired 
a control system that prevents the user from 
colliding with the game enclosure and other 
quadcopters.  

• Ease of Flight We desired that the user ex-
perience be focused on gameplay, rather than 
learning the controls of the game. To make 
controlling the quadcopter easier, we desired a 
control layout (button mapping) that would be 
intuitive and familiar to video gamers.  

• Immersion To enhance the immersive link 
between the virtual and real game environ-
ments, we desired that the effects of in-game 
events could be simulated on the real drone. 
For instance, if a player experiences an in-
game collision with a wall in the virtual 
environment, their quadcopter should also be 
stopped in the real environment. This type of 
control would be more difficult to implement 
using the stock Solo controller. 

 
We have implemented a control system for the 
quadcopter using MAVROS that allows for move-
ment of the quadcopter using joystick inputs famil-
iar to gamers. This system (described below) acts as 
a layer on top of the Solo’s internal autopilot 
firmware. The GUIDED mode of the autopilot 
firmware is used for flight, while TAKEOFF and 
LAND mode are used for landing. The control 
system can be subdivided into three conceptual 
components: user input, waypoint mapping, and 
waypoint modification. 
 
B. Basic Movement: User input and waypoint 

mapping  
1) User input  
User input is captured from the Oculus touch 

controllers on each Windows workstation and for-warded 
to the Linux workstation via rosbridge. The controller 
information is represented as two vectors, one 
corresponding to the state of the but-tons, and another 
corresponding to the state of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Quadcopter and local frames of reference  

 
 
joysticks. The state of the buttons is indicated as 0 
(unpressed) or 1 (pressed). The state of the 
joystick is indicated as a pair of real values 
between -1 and 1, each value corresponding to one 
axis of the joystick.  

2) Waypoint mapping  
Two frames of reference are considered in the 

control system: the quadcopter frame (fixed with 
respect to the Solo) and the local frame (fixed with 
respect to the game enclosure). Both of these frames of 
reference are illustrated in Figure 4. We first map the 
joystick data to a waypoint in the quadcopter frame. 
We allow for control of the quadcopter along three 
translational axes (forwards/backwards, up/down, 
left/right) as well as one rotational axis (yaw). Each of 
these axes is mapped to an axis of joystick input on the 
Oculus touch controllers (see Fig. 3).  

Considering the current quadcopter pose 
 

x = [locationx; locationy; locationz; yaw]T
 

 
and joystick input 
 

j = [inputx; inputy; inputz; inputyaw]T
 

 
we generate the waypoint in the quadcopter frame 
xq by the following: 
 

xq = x +  j 
 
where is a user-defined diagonal matrix of input 
sensitivities. Larger values in the diagonal entries of 
correspond to a waypoint that is further in the 
corresponding direction for the same input.  

A coordinate transformation is applied to xq to 
obtain the waypoint coordinates xl in the local 
frame of reference as follows 



 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

 

xl = T xq 
 
where T is the matrix representing the transfor-mation 
from the quadcopter frame of reference to the local 
frame. There are two reasons for this transformation. 
The waypoints are communicated to the quadcopter 
using MAVROS, and MAVROS requires that these 
coordinates be in the local frame of reference. 
Additionally, the waypoint locations in the local frame 
will be required for the features described in Collision 
Avoidance. In practice this transformation is 
implemented using the ROS tf tool, a utility in ROS 
that automatically tracks the transformations between 
coordinate frames cen-tered on various objects.  

Because the quadcopter uses PID control to correct 
the error between its current pose and the waypoint, the 
quadcopter moves faster towards a waypoint that is 
further away. The waypoint is continuously updated, so 
that continuous joystick input results in movement at a 
constant velocity. For the user, this provides the feeling 
of direct velocity control. Greater input magnitude 
(moving the joystick further) results in greater velocity 
in the corresponding direction. 
 
C. Waypoint Modification: Collision avoidance 

and simulation of in-game events  
We propose modification of the waypoints pro-

duced by the above method for two primary rea-
sons: collision avoidance and simulation of in-game 
events on the real quadcopter. 
 

1) Collision Avoidance  
We first designate a ”safety radius” around the 

quadcopter. The safety radius is equal to the maxi-
mum physical radius of the quadcopter itself, plus an 
additional length that represents the quadcopter 
stopping distance when travelling at its maximum 
allowed speed. This maximum speed is an arbitrary 
limit set by the game developers for a particular 
game.  

We suggest that the safety radius be equal to the 
quadcopter size plus the stopping distance of the 
quadcopter at its maximum allowed speed, as opposed 
to the stopping distance at its current speed. This is 
done for two reasons. First, it simplifies the 
calculations necessary for collision 

 
avoidance by maintaining a safety radius of fixed size. 
Second, it is a conservative approach that is less likely 
to result in crashes due to inaccuracy in the quadcopter 
pose estimates or other errors.  

These safety radii can be represented as spheres in 
Unity, and the intersection of these spheres can be 
used to check for and predicts collisions. The safety 
radii would remain hidden from the user view of the 
game.  

Quadcopter-Object interaction The simplest case of 
collision avoidance is that of a potential collision 
between a quadcopter and a stationary object, such as a 
wall. This scenario is illustrated in the top portion of 
Figure 5. As illustrated, the user has provided joystick 
input, and this joystick input has been mapped to a 
waypoint. The arrow represents the vector between the 
current quadcopter position and the waypoint, with the 
waypoint located at the arrow tip. We will call this 
vector the quadcopter trajectory.  

In Unity, a sphere representing the safety radius 
around the waypoint is maintained, and its position 
is constantly updated to match the quadcopter’s 
current waypoint. We predict the collision illus-
trated in Figure 5 by detecting that the waypoint 
safety radius intersects with the representation of the 
game enclosure in Unity.  

We then reduce the magnitude of the quadcopter 
trajectory to avoid the collision. We label the point along 
the wall surface that intersects with the direction of the 
quadcopter trajectory as the intersection. We then find the 
location along the quadcopter trajectory that is closest to 
the inter-section without causing the waypoint safety 
radius to actually overlap the obstacle. This point occurs 
where the safety radius is tangential to the surface of the 
obstacle. When a collision is predicted, the calculations to 
determine the modified waypoint will be performed in 
Unity, and the modified waypoint will be sent to ROS via 
rosbridge.  

Quadcopter-Quadcopter interaction Figure 6 shows the 
case of a potential collision between two quadcopters. In 
this case, one or both quadcopter trajectories must be 
modified such that the safety radii are no longer 
intersecting. Among the many possible approaches to this 
problem, we desired a simple solution that does not 
interfere excessively with the gameplay experience. To 
accomplish this, 



 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Waypoint modification for collision avoidance between 
quadcopter and stationary object 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Collision avoidance between two quadcopters. The original 
quadcopter trajectories v1 and v2 are scaled by the fraction to 
produce the modified waypoints.  
  

we multiply the length of each quadcopter trajec-
tory by , the fraction of the distance that each 
quadcopter can travel between its current loca-tion 
and its specified waypoint where the safety 
spheres around each quadcopter first intersect. 
This fraction can be found by solving a quadratic 
equation.  

2) Simulation of in-game events on real quad-
copter  

Our method of quadcopter control allows for 
simulation of the real quadcopter’s reaction to in-
game events. Stopping the quadcopter when it 
reaches a virtual wall can be accomplished directly 
using the collision prevention system described 
above. Many other types of effects can be poten-
tially created using this system. We will describe 
two in particular: simulated crash (forced landing), 
and slowing.  

Forced landing is the simpler of the two ef-fects. It 
can be accomplished by switching the quadcopter from 
GUIDED to LAND mode via MAVROS. No waypoint 
modification is necessary, since waypoints are only 
condsidered in GUIDED mode. The potential risk of 
landing on top of another player’s quadcopter can be 
mitigated by the collision prevention system. Since the 
land-ing quadcopter would ignore waypoints, priority 
would be given to the landing quadcopter in the 

 
 
event of a potential collison, and the free-flying 
quadcopter would have its waypoints modified.  

Another useful form of real-world feedback for in-
game events is slowing a player’s quadcopter. In 
games such as racing or maze navigation, it is desirable 
to have areas of the game environment where the 
player suffers a penalty in speed for entering the area. 
In typical racing games, if a player goes off-track 
(through patch of grass or sand), the player’s 
movements are slowed while they remain in this off-
track area. This feature prevents cheating by cutting the 
track.  

Slowing in all directions could be accomplished 
simply by scaling down the input sensitivities . 
However it would be desirable to slow in only some 
directions in certain instances. For example, consider 
the case of friction against walls. In the case that a 
player is flying against a wall, they should receive a 
penalty to their movement speed to simulate friction 
with the wall. However, this penalty should not be 
applied if the player is moving away from the wall, 
otherwise the wall will feel ”sticky”.  

Slowing in a particular direction can be accom-
plished by a mechanism similar to the one used for 
collision avoidance. We can define slowing zones as 
in-game objects in Unity, either visible 



 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

or invisible to the player. Slowing is applied by adding a 
multiplier less than one to the quadcopter waypoint 
mapping. We apply slowing only if the quadcopter’s 
current position is inside or on the boundary of the 
slowing zone. Furthermore, we can limit slowing to only 
be applied when the quadcopter trajectory points towards 
the interior of the slowing zone, or is parallel to the 
slowing zone surface. This is useful in the case of friction 
against walls, so that movement away from the wall is not 
penalized (see Figure 7.)  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Waypoint modification to simulate friction with a virtual 
wall object 
 
 
D. Control system limitations  

The proposed control system has several lim-itations. 
One possible limitation of the waypoint modification 
method is that it may cause the quadcopter to decelerate 
too soon before reaching an obstacle. Some slowing 
before reaching an obstacle is necessary - it is impossible 
for the quad-copter to decelerate from some constant 
velocity to zero instantaneously. However, if deceleration 
as the quadcopter approaches an obstacle is too gradual 
and begins too soon, the obstacle will feel ”spongy” to the 
player.  

To minimize this effect, deceleration to avoid 
collision should only occur once distance be-tween 
the quadcopter and the obstacle is equal to the 
quadcopter safety radius, and the quadcopter should 
maintain its current velocity when the dis-tance from 
the waypoint is greater than or equal to the safety 
radius. Furthermore, a smaller safety radius is 
desirable. The quadcopter cannot go from forward 
movement to stopping instantaneously, so this issue 
will always be present. However, whether the 
deceleration will be fast or slow will determine the 
”sharpness” of the gameplay expe-rience. 

 
Another current limitation of the quadcopter control 

algorithm is that it does not model elastic collisions. 
When the player quadcopter approaches an obstacle, the 
waypoint is adjusted such that the quadcopter stops just 
short of the obstacle. However, we do not implement any 
”rebound” effect so that the player quadcopter bounces 
back from the obstacle. Similarly, the proposed system 
for avoiding collisions between two quadcopters will 
result in collisions where (if the user input is unchanged) 
the quadcopters will come to rest at a minimum distance 
of two safety radii away from each other without 
rebounding away from each other. Depending on the 
game context, a rebounding feature may better match 
what players would expect based on real-world physics 
and the physics of other video games. Implementing this 
feature is possible through further waypoint modification, 
and we intend to experiment with this after the basic 
collision avoidance system has been demonstrated to 
work.  

The safety radius size also presents a potential 
limitation. We propose that the safety radius be based on 
the stopping distance of the quadcopter at its maximum 
speed. This provides the benefits of simplicity and added 
safety as described above. However, it does also limit the 
game dynamics, since the collision avoidance system will 
restrict the movements of slow-moving quadcopters as if 
they were moving much faster. In other words, generally 
larger safety radii will produce a heavy-handed collision 
avoidance system that restricts quadcopter movement to a 
greater degree. Once the proposed collision avoidance 
system is vali-dated for safety, we plan to gradually 
increase the amount by which the safety radii scale with 
the quadcopters’ current velocities.  

Another potential issue is latency between con-trol 
input and quadcopter movement, as well as between in-
game events and real-world feedback. 
 

IV Results 
 

Each aspect of the game system has produced 
promising results individually. The localization system 
produces pose estimates that are accurate enough to play 
a simple 1-player pong game, as well as a maze 
navigation game using the stock 3DR Solo controller. 
However, pose estimates are 



 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

not always smooth, which makes in-game objects 
appear as if they are jumping or shifting quickly in 
position with respect to the real-world video. This 
will be a much more significant problem in later 
games with a more developed AR environ-ment. 
Stationary overlays on real-world objects will appear 
to be moving, which would create a disorienting 
effect for the user. Nonetheless, it is currently 
possible for skilled flyers to hit the ball (using the 
stock 3DR Solo controllers), and interaction with the 
ball appears generally as expected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. User view of pong game 
 

Basic movement using the quadcopter control system 
has also shown promising results, although the collision 
avoidance system is not yet imple-mented. A novice pilot 
is able to reliably take-off, land, and maneuver the 
quadcopter using a standard gaming controller. However, 
flight tests have only been conducted using pose estimates 
produced by an external motion capture system. We have 
not yet integrated the ORB-SLAM2 lo-calization 
algorithm. The positions of in-game ob-jects can be 
updated based on the real quadcopter  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. User view of maze game 

 
position, but this link has not yet been tested in a 
full-scale game. 
 

V    Discussion  
A. Gaming Applications  

We anticipate use of this system primarily in 
large entertainment venues. The game system 
could also be sold for private use, however the 
size of the game play area is rather large, and the 
system cost would likely be prohibitive for most 
consumers. 
 
B. Applications outside of gaming  

The quadcopter control system provides an in-tuitive 
way for novice flyers to operate the Solo quadcopter. 
The results in the localization and control aspects of 
this project have potential for use outside of gaming, in 
autonomous and semi-autonomous applications in 
industries such as package delivery and site inspection.  

The AR elements of the system also have appli-
cability as a training system for drone use as a first-
response or security technology. Training scenarios 
could be developed in-game, and novice pilots could 
use the game system to practice operating the 
quadcopter in these training scenarios without the risk 
of crashing, with AR emergencies added to the real 
world environment. 
 
C. System Limitations  

1) Cost and Hardware Requirements  
The system cost is another potential limitation in 

addition to the limitations discussed in Quad-copter 
Control. The hardware requirements of the system are 
necessitated by software restrictions, and by the 
computational demands of performing localization and 
rendering the game. The Oculus SDK currently only 
supports one set of headset and controllers per 
workstation - as a result, our game system requires one 
Windows workstation per player to run the game in 
Unity. 
 
D. Future Improvements  

There are a wide range of improvements that could 
be made to this system. Adding a smart-phone app that 
allows spectators to view the AR elements of the game 
through their phone would improve attraction quality 
for spectators. The vari-ety of available games could be 
greatly improved 



 
 

IN PRESS, UC DAVIS McNAIR SCHOLARS JOURNAL 2019 
 

as well. In addition to the maze and pong games, we 
are currently developing a shooting game, in which 
players fire objects at each other. A number of other 
games could be developed, including tag, soccer, 
billiards, and racing. The aesthetics of the existing 
games could also be improved by adding color and 
texture to the virtual object models. 

 
addition, the proposed collision avoidance system 
has not been implemented. 

After further development and refinement of 
this system, we anticipate its use in exhibition 
settings or entertainment venues. Our results lay 
the groundwork for an exciting new form of 
quadcopter-based multi-player AR gaming. 
  

VI Conclusion 
 

Augmented Reality (AR) is an increasingly pop-ular 
technology for entertainment and information display. 
AR, unlike VR, allows the users to remain firmly 
anchored in the real world environment while 
interacting with visual elements that appear in fixed 
registration with the real world coordinate frame. One 
of the future areas where AR can offer a paradigm 
shifting experience is in combination with quadcopters. 
We propose a multi-player video game platform that 
combines AR and quadcopter technology, which can 
be used to implement a wide variety of games.  

This system relies on multiple 3DR Solo quad-
copters, equipped with GoPro Hero cameras. Each 
player’s quadcopter is connected to the Linux 
workstation, which is responsible for localizing each 
quadcopter using the ORB-SLAM2 algo-rithm. The 
Linux workstation is networked to multiple Windows 
workstations (one per player) which are responsible for 
running the AR game and producing the user display in 
Unity.  

We propose a control system that uses player 
input to produce waypoints relative to the quad-
copter, and allows the quadcopter to navigate to 
these waypoints automatically using its autopi-lot 
firmware. This system will facilitate collision 
avoidance - waypoints can be modified in the case 
that a collision is predicted. This system also 
facilitates the simulation of in-game events on the 
physical quadcopter.  

Discrete components of the game system have 
obtained promising preliminary results. The lo-calization 
system produces pose estimates that are accurate enough 
to play a simple 1-player pong game. The control system 
has also shown promising results, as we are able to 
navigate the quadcopter using a standard video game 
controller, and take off and land automatically. However, 
these two systems have not yet been integrated. In 

 
References 

 
[1] Snapchat. [Online]. Available: https://whatis.snapchat.com/ 
[2] Pokemon Go. [Online]. Available: 

 http://origin.pokemongo.com/    
[3] Mobidev. Augmented reality in healthcare: Way 

 to  medicine’s  digital transformation. [Online]. Avail- 
 able: https://mobidev.biz/blog/augmented-reality-in-healthcare- 
 digital-transformation     
[4] HTC Vive-VR. [Online]. Available: https://www.vive.com/eu/  
[5] Playstation. PS-VR. [Online]. Available: 

https://www.playstation.com/en-us/explore/playstation-vr/ 
[6] Microsoft HoloLens. [Online]. Available: 

 https://www.microsoft.com/en-us/hololens/why-hololens 
[7] Oculus Rift. [Online]. Available: https://www.oculus.com/rift/  


